derivada

Cálculo – A definição da derivada, a explicação intuitiva e algumas aplicações

by / 4 Comments / 156 View / 12 de julho de 2013

Você certamente já ouviu a palavra derivada. Se não, no mínimo já ouviu falar de Cálculo. Não é por nada que ele é tão famoso. Os conceitos envolvidos em seu estudo são fundamentais para ciências como a Química e, principalmente, a Física. Logo, darei alguns exemplos que demonstram tal importância.

O Cálculo está presente na maioria dos cursos de ciências exatas, e é na disciplina de Cálculo I que se tem o primeiro contato com os limites, as derivadas e as integrais (conceitos de grande importância para a matemática).  Por conta da diversidade de conteúdo que precisa ser analisado, essa matéria é uma das que causam mais medo nos calouros.

Um dos pioneiros do Cálculo Moderno é Sir Isaac Newton – aquele da maçã (simultaneamente a Gottfried Leibniz). Sim, um físico desenvolveu conceitos do cálculo, e não é por nada – ressalto o quão fundamental é o cálculo para a Física. Ele relutou até aceitar que fossem publicadas suas descobertas acerca dessa maravilhosa área da matemática. Embora seja interessante explorar os fatos históricos, não pretendo me delongar neste ponto. Então, vamos à parte boa, a Matemática.

A noção de derivada é quase uma extensão do conceito de coeficiente angular da geometria analítica, mas se aplica a qualquer função, e não apenas a retas. Se você lembra o que aprendeu sobre isso no Ensino Médio já é um bom começo. Aos que não se recordam muito bem, darei uma breve explicação:

O coeficiente angular de uma reta diz respeito à inclinação desta reta. Quanto mais distante de zero é o coeficiente angular, maior é a inclinação da reta. Calcula-se o coeficiente angular de uma reta pela razão de uma variação de y por uma variação de x, correspondente à reta. Matematicamente, a = (y – y’) / (x-x’), onde a é o coeficiente angular, y e y’ são valores arbitrários para y, x e x’ são os valores de x correspondentes àqueles valores de y. O coeficiente angular equivale à tangente do ângulo que a reta forma com o eixo x.

Uma “interpretação intuitiva” disso é que o valor do coeficiente angular representa o quanto y varia em função de x. Por exemplo, se esse valor é 4, para cada variação de x haverá uma variação corresponde quádrupla desse valor em y. Observe o exemplo:

y = 4.x

Se x = 1, y=4. Se x = 2, y = 8. Nota-se que o x variou em 1 unidade e o y variou em 4, já que (8 – 4) / (2-1) = 4.

Para entender o que é a derivada, é preciso que se conheça o conceito de limite.

O limite é uma aproximação infinitesimal de x a algum valor, mas sem que x seja exatamente aquele valor.

Vamos analisar a função y = 1/x. Essa função não está definida para x = 0, pois não existe divisão com quociente 0 (zero) na matemática. Porém, você pode calcular o limite da função 1/x, com x tendendo a zero.  Quanto isso dá? (No caso, vamos calcular o limite com x tendendo a zero pela direita, ou seja, pelos valores mais positivos).

Pegue um valor cada vez mais próximo de zero e substitua na função dada. Se pegarmos x = 0,1 obtemos = 10. Pegando x = 10^-10 (dez elevado a menos dez, que é 0,0000000001), obtemos y=10^10, que é 10000000000. Com x = 10^-10000000, teremos um y de 10^10000000, e assim sucessivamente. Não é difícil concluir que se aproximarmos x infinitamente de zero, obteremos um valor infinito de y. Então, o limite lateral à direita com x tendendo a zero de 1/x é infinito (e assim também será com o limite lateral à esquerda).

Sabendo o que são limites, agora podemos estudar as derivadas:

A derivada é a inclinação do gráfico de uma dada função, para um dado valor de x. Também pode ser interpretada como o quanto y varia em função de x. No caso da reta, a inclinação não varia em função de x, pois é constante por todo o gráfico (em retas, a derivada é constante e corresponde ao coeficiente angular). Em funções que não são retas, a derivada depende do valor de x. É só pensar, por exemplo, numa função como uma parábola, a famosa função de segundo grau, do Ensino Médio. A inclinação do gráfico dessa função não é a mesma para todos os valores de x. Assim funciona com uma função trigonométrica, como a função seno, por exemplo.

Agora olhe a imagem deste post. Você vê que aquilo é um esboço de algo que se assemelha ao coeficiente angular do gráfico, e a única diferença é que o gráfico não é uma reta. Quando escolhemos e ligamos dois pontos arbitrários de um gráfico não-linear, chamamos a reta que liga esses dois pontos de reta secante (a reta secante pode interceptar infinitos pontos do gráfico da função). Você concorda que, quanto mais aproximarmos os pontos a e b, mais próximos estaremos de encontrar uma reta cuja inclinação corresponde à inclinação do gráfico nas proximidades dos pontos a e b? A derivada envolve uma aproximação infinitesimal, um limite.  Quando b tende infinitamente a a, a inclinação da secante é a derivada, que é a inclinação do próprio gráfico dessa função no ponto a. Repare que com = 0 ou com  a b, aquela equação fica indefinida, há uma divisão por zero. Por isso é um limite, como já expliquei.  A definição formal de derivada é aquele limite que está escrito ao lado do gráfico, tanto o primeiro quanto o segundo (na verdade, esses dois limites são equivalentes). Lê-se “o limite, com b tendendo a a, de f(x)”, no primeiro caso e “o limite, com h tendendo a zero, de f(x)”, no segundo caso.

Mas, afinal, para que serve a derivada?

A primeira e mais clássica aplicação da derivada é a velocidade instantânea de um corpo (viu como é importante? A primeira matéria ensinada no curso de Física I já envolve derivadas). Se é dada a função que descreve a posição de um corpo em função do tempo, a derivada dessa função corresponde à velocidade do corpo naquele instante de tempo (lembra que a velocidade é a variação de espaço dividido pela variação de tempo, e a derivada de y com relação a x é o quanto y varia em função de x? Fica claro que a derivada da posição de um corpo é a velocidade. É só pegar aquela primeira definição de derivada, na imagem, e substituir y = espaço e x = tempo). Isso permite que se calcule a velocidade do corpo para qualquer instante de tempo (a não ser que a derivada não esteja definida em algum ponto, o que não ocorre na Física Clássica). Tal noção é intuitiva, pois se o gráfico da posição em função do tempo é muito inclinado há uma grande variação de espaço por unidade de tempo, ou seja, o módulo da velocidade é alto.

Se pegarmos, analogamente, a função da velocidade em função do tempo e determinarmos a derivada, temos a aceleração do corpo pra qualquer instante (a aceleração é definida como a variação de velocidade dividido pela variação de tempo).

Outro exemplo é no caso de encher um recipiente com água. Sabendo a função que descreve o formato do recipiente e a quantidade de água que entra por unidade de tempo, pode-se saber com que velocidade a água sobe em um determinado instante de tempo.

O último exemplo (e este não é tão comum no dia-a-dia) é determinarmos o que ocorrem com ondas estacionárias. Para determinarmos o comportamento dessas ondas, temos que analisar as condições de contorno da função da onda, algo que envolve derivadas.

 

4 Comment

  1. Muito boa a matéria. Só precisa fazer um ajuste em "e assim também será com o limite lateral à esquerda" (tende ao infinito negativo). : )

  2. quando vc escreveu "pelos valores mais positivos" vc deveria ter escrito pelos valores maiores que x, denomina-se positivo qualquer numero maior que zero, logo um bilhão não é mais positivo do que 5, dizemos um bilhão é maior do que 5

  3. Excelente artigo. Fico fascinado com a matemática, algo tão abstrato, lógico e previsível… fantástico.

  4. Muito bom!

Your Commment

Email (will not be published)